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ACCOUNTING FOR THE ELASTIC PROPERTIES

OF A NON-NEWTONIAN MATERIAL UNDER ITS VISCOSIMETRIC FLOW

UDC 539.214 + 539.374A. A. Burenin, L. V. Kovtanyuk, and A. S. Ustinova

This paper considers the deformation and viscoplastic flow of a non-Newtonian material enclosed
between coaxial rigid cylindrical surfaces, each of which performs a rotation followed by a stop and a
rotation in the opposite direction. The problem is solved using the model of large elastoviscoplastic
deformations, in contrast to the classical solutions obtained using the model of a rigid viscoplastic
body. The parameters of the viscosimetric process are calculated in both the region of viscoplastic
flow developed and the region of elastic deformation.
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In models of viscous and viscoplastic media, constants are usually determined by the properties of viscosi-
metric flows using the exact solution of the corresponding boundary-value problem. In the theory of viscous and
viscoplastic media, such solutions are classical [1–3]. A problem of current issue is the investigation of effects due to
the elastic properties of intensely deformed materials. Among such effects are inadmissible changes in the geometry
of articles subjected to pressure treatment during manufacture (elastic afteraction), leading to the occurrence of
inadmissible large residual stresses. Calculations with similar effects taken into account should be performed using
the mathematical model of large elastoviscoplastic deformations. In this case, it is necessary to have exact solu-
tions of the equations of this model not only for processing experimental results but also for testing the calculation
algorithms. In the present paper, such a solution is constructed.

1. Basic Model Relations. The problem is solved using the model of large elastoplastic deformations
proposed in [4] and extended to the case of deformation with allowance for viscosity [5]. In the Cartesian rectangular
system of spatial Eulerian coordinates xi, the reversible (elastic) eij and irreversible (plastic) pij components
(undeterminable in experiments) of the total Almansi strain tensor pij are defined by the differential equations of
variation (transfer) in the form

Deij

Dt
= εij − εp

ij −
1
2

(eik(εkj − εp
kj − zkj) + (εik − εp

ik + zik)ekj),

Dpij

dt
= εp

ij − pisε
p
sj − εp

ispsj ,
Dnij

Dt
=

dnij

dt
− riknkj + nikrkj ,

εij =
1
2

(vi,j + vj,i), vi =
∂ui

∂t
+ ui,jvj , ui,j =

∂ui

∂xj
,

zij = A−1[B2(εikekj − eikεkj) + B(εikektetj − eikektεtj) + eikεktetsesj − eikektεtsesj ], (1.1)

A = 8 − 8E1 + 3E2
1 − E2 − E3

1/3 + E3/3, B = 2 − E1,

E1 = ejj , E2 = eijeji, E3 = eijejkeki,

rij = ωij + zij , ωij = (vi,j − vj,i)/2.
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Here ui and vi are the components of the displacement vectors and velocities of points of the medium; D/Dt is the
objective derivative of the tensors with respect to time, and rij is the rotation tensor, whose components zij depend
on the reversible strains and strain rates. In the equation of variation of the tensor pij , the source εp

ij should be
referred to, as in the classical theory, as the plastic strain-rate tensor components. According to Eqs. (1.1), during
relaxation (εp

ij = 0), the irreversible strain tensor components vary in the same manner as in rigid body motion.
The components of the total Almansi strain tensor dij are expressed in terms of its components eij and pij as

dij = eij + pij − eikekj/2 − eikpkj − pikekj + eikpksesj . (1.2)

The stresses in the medium are completely determined by reversible strains and are related to them, according
to the laws of thermodynamics for incompressible media, by the equations

σij =

⎧
⎪⎪⎨

⎪⎪⎩

−pδij +
∂W

∂dik
(δkj − 2dkj), pij ≡ 0,

−p1δij +
∂W

∂eik
(δkj − ekj), pij �= 0.

(1.3)

Here p and p1 are additional hydrostatic pressures. Assuming that the medium is isotropic, we write the elastic
potential W as

W = −2μJ1 − μJ2 + bJ2
1 + (b − μ)J1J2 − χJ3

1 + . . . ,

Jk =

{
Lk, pij ≡ 0,

Ik, pij �= 0,
(1.4)

L1 = dkk, L2 = dikdki, I1 = ekk − eskeks/2, I2 = estets − eskektets + eskektetnens/4

(μ, b, and χ elastic constants of the medium). This choice of the invariants I1 and I2 of the reversible strain tensor
ensures passage to the limit from the second dependence in (1.3) to the first dependence as the irreversible strains
tend to zero.

We assume that irreversible strains are accumulated in the material when the stress state reaches the loading
surface, which is the plastic potential, by virtue of the Mises maximum principle. As such a surface, we use the
Tresca plasticity condition extended to the case of deformation with allowance for viscosity [6, 7]:

max |σi − σj | = 2k + 2η max |εp
k|. (1.5)

Here k is the yield limit, η is the viscosity, and σi and εp
k are the principal values of the plastic stress and strain

rate tensors, respectively.
The irreversible strain rates are related to the stresses by the associated plastic flow law

εp
ij = λ

∂f

∂σij
, f(σij , ε

p
ij) = k, λ > 0. (1.6)

2. Elastic Equilibrium. Let an elastoviscoplastic material, whose properties are described by the relations
given above, fill the space between two cylindrical matrices with rigid walls. We consider the deformation of this
material in the case of rotation of the inner rigid cylinder of radius r = r0 and the motionless outer cylinder of
radius r = R0. Thus, in cylindrical coordinates (r, ϕ, z), the boundary condition is written as

u
∣
∣
∣
r=R0

= 0. (2.1)

We assume that, in the case considered, all points of the medium, including the boundary points, move on
circles. Then, the components of the displacement vector have the form

ur = r(1 − cos θ), uϕ = r sin θ,

where θ = θ(r, t) is the central angle of twisting.
An increase in the angle θ first leads only to elastic deformation. Once the angle reaches a certain value

θ0 = θ(t0), plastic flow begins in the vicinity of the inner rigid wall. Next, setting t0 = 0, we calculate the parameters
of the stress–strain state at this time.
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In the case considered, the nonzero components of the Almansi tensor are the following:

drr = −1
2

g2, drϕ =
1
2

g, g = r
∂θ

∂r
. (2.2)

According to relations (1.3) and (1.4), the stress components, to within strain terms of the second order, are
calculated by the formulas

σrr = σzz = −(p + 2μ) − (b + μ)g2/2 = −s,

σϕϕ = −s + μg2, σrϕ = μg.
(2.3)

Using the boundary condition (2.1) and the plasticity condition in the form

(σrr − σϕϕ)2 + 4σ2
rϕ = 4k2,

from the equilibrium conditions
∂σrr

∂r
+

σrr − σϕϕ

r
= 0,

∂σrϕ

∂r
+ 2

σrϕ

r
= 0

we find the angle of rotation θ0 at which plastic flow begins:

θ0 =
k

2μ

(
1 − r2

0

R2
0

)
. (2.4)

Under elastic equilibrium conditions, the stress components are defined by the relations

σrr = σzz =
k2

4μ

(
1 − r4

0

r4

)
+ σ0, σϕϕ =

k2

4μ

(
1 + 3

r4
0

r4

)
+ σ0, σrϕ = −k

r2
0

r2
,

where σ0 is the value of the stress component σrr on the surface r = r0 at the moment of the beginning of plastic
flow. We can set σ0 = 0.

From relation (1.2), we find the following relations necessary for the further calculations:

erϕ = drϕ = −1
2

k

μ

r2
0

r2
, err = −3

2
e2

rϕ, eϕϕ =
1
2

e2
rϕ. (2.5)

3. Irreversible Deformation. Beginning at the time t = t0 = 0, an increase in the angle of rotation
in the vicinity of the inner rigid cylinder leads to the development of a region of viscoplastic flow r0 ≤ r ≤ r1(t)
[r1(t) is the moving boundary of the region of plastic flow, which separates it from the zone of elastic deformation
r1(t) ≤ r ≤ R0(t)].

According to relations (1.1) and (1.2), the kinematics of the medium is defined by the relations

ur = r(1 − cos θ(r, t)), uϕ = r sin θ(r, t),

vϕ = r
∂θ

∂t
, εrϕ =

1
2

(∂vϕ

∂r
− vϕ

r

)
=

∂drϕ

∂t
=

1
2

r
∂2θ

∂r ∂t
,

εrϕ = εe
rϕ + εp

rϕ =
∂erϕ

∂t
+

∂prϕ

∂t
, (3.1)

εp
rr =

∂prr

∂t
+ 2prϕ(rϕr + εp

rϕ), εp
ϕϕ =

∂pϕϕ

∂t
+ 2prϕ(rrϕ + εp

rϕ),

εp
rr = −εp

ϕϕ = −2εp
rϕerϕ.

Integration of the equilibrium equations (quasistatic approximation) in the region of reversible deformation using
condition (2.1) yields

σrϕ =
c(t)
r2

, θ(r, t) =
c(t)
2μ

( 1
R0

− 1
r2

)
, (3.2)

where c(t) is an unknown function of integration.
From the second relation in (1.3), the stress components in the region of viscoplastic flow r0 ≤ r ≤ r1(t) are

expressed as
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σrr = σzz = −(p1 + 2μ) − 2(b + μ)e2
rϕ = −s1(t),

σϕϕ = −s1(t) + 4μe2
rϕ, σrϕ = 2μerϕ.

(3.3)

In the derivation of expressions (3.3), we used the kinematic relations (2.5). At the same time, integration of the
equilibrium equations yields

σrϕ =
m(t)
r2

, erϕ =
m(t)
2μr2

. (3.4)

From the conditions of continuity of the stress components on the boundary of the region of elastoplastic
flow r = r1(t), it follows that

m(t) = c(t), s(t) = s1(t).

The plastic flow condition (1.5) is written as

σ2
rϕ − (k + η|εp

rϕ|)2 = 0. (3.5)

The associated plastic flow law (1.6) and condition (3.5) leads to

σrϕ = −k + ηεp
rϕ, λ = −εp

rϕ/(k − ηεp
rϕ). (3.6)

Using (3.4) and (3.6), we can calculate the plastic strain rate

εp
rϕ =

1
η

(c(t)
r2

+ k
)
.

Taking into account the second equality in (3.4) and using the kinematic relations (3.1) and the condition
of continuity of the function θ(r, t) on the boundary of the region of viscoplastic flow r = r1(t), for the region of
irreversible deformation, we obtain

θ(r, t) =
c(t)
2μ

( 1
R2

0

− 1
r2

)
+

c1(t)
η

( 1
r2
1(t)

− 1
r2

)
+

2kt

η
ln

r

r1(t)
, c1(t) =

∫

c(t) dt.

From the condition of continuity of the derivative ∂θ/∂r on the boundary r = r1(t) and the loading condition
on the boundary r = r0, we calculate the functions c(t) and c1(t) and obtain the ordinary differential equation for
r1(t):

c1(t) = −ktr2
1, c(t) = −k(r2

1 + 2r1ṙ1t), ṙ1 =
dr1

dt
,

ṙ1 =
[kr2

1

2μ

( 1
R2

0

− 1
r2
0

)
+

kt

η

(
1 − r2

1

r2
0

− 2 ln
r0

r1

)
+ θ(r0, t)

] / [ktr1

μ

( 1
r2
0

− 1
R2

0

)]
.

The development of the zone of viscoplastic flow r1(τ) = r1(t)/R0 in time (τ = αt) for the values of the
constants αη/μ = 0.001, r0/R0 = 0.5, and k/μ = 0.006 21 is shown in Fig. 1. As the angle of rotation increases [for
the numerical solution, we used the linear law θ(r0, t) = θ0(1 + αt)], the function r1(t) asymptotically approaches
a certain value dependent on the properties of the material.

The obtained function r1(t) is used to determine the function θ(r, t), the stresses, and the total and reversible
strains in both the region of reversible deformation and the region of viscoplastic flow. According to formula (1.2),
in which the total strains are divided into reversible and irreversible, the plastic strain components are defined by
the relations

prϕ =
kt

η

(
1 − r2

1

r2

)
, pϕϕ = 2erϕprϕ, prr = 2drϕ(erϕ − drϕ).

4. Relaxation and Flow for Rotation of the Cylinder in the Opposite Direction. For the stop of
the inner cylinder (θ = θ1) at a certain time t = t1, the boundary of the region of viscoplastic flow is determined
by the value r1 = r1(t1). If the angle of rotation is not increased further, this value does not change. In this case,
the strain components, and, hence, the stress components, also remain unchanged. If the deformation process is
completed, such strains and stresses are residual.

Let us elucidate how the stress–strain state changes if the inner cylinder is rotated in the opposite direction
beginning at the time t = t1 (or any time t > t1).
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Fig. 1. Boundary r1(τ ) of the region of viscoplastic flow for rotation of the inner cylinder (r0/R0 = 0.5).

For θ < θ2, only reversible deformation occurs in the material. Beginning at the time t = t2, the stress state
in the vicinity of the inner rigid cylinder reaches the loading surface:

σrϕ(r0) = k. (4.1)

In other words, the stress component σrϕ = c(t)/r2 first decreases in absolute value, and then [for θ(t∗) = θ∗], it
increases until the plasticity condition (4.1) is satisfied and a new region of plastic flow begins to develop in the
vicinity of the inner surface. From the equality σrϕ|θ=θ∗ = 0, we obtain c(t∗) = 0. Hence, if the angle of rotation
of the boundary surface r = r0 equals θ∗, the stress σrϕ is equal to zero not only on this surface but also over the
entire region of deformation (in both the region of elastic deformation and the region of viscoplastic flow).

To find the value of θ∗ and the value of θ2, which determines the beginning of plastic flow, it is necessary to
solve the problem of elastic equilibrium with accumulated irreversible strains. In the region of reversible deformation
r1 ≤ r ≤ R0, the strain and stress components are defined by relations (2.2) and (2.3), and the value of θ(r, t) is
defined by relation (3.2). Taking into account that the plastic strain tensor component prϕ does not change before
the beginning of plastic flow (εp

rϕ = 0), we determine the function θ(r, t) in the region with accumulated irreversible
strains using the condition drϕ = erϕ + prϕ and the condition of continuity of θ(r, t) for r = r1:

θ(r, t) =
2kt1
η

(
ln

( r

r1

)
+

1
2

(r2
1

r2
− 1

))
+

c(t)
2μ

( 1
R2

0

− 1
r2

)
. (4.2)

We note that, although the components prr and pϕϕ vary, the irreversible strain tensor remains unchanged.
From equalities (4.1), (4.2), and c(t∗) = 0, we determine the angles θ∗ and θ2:

θ∗ =
2kt1
η

(
ln

(r0

r1

)
+

1
2

(r2
1

r2
0

− 1
))

, θ2 = θ∗ − k

2μ

(
1 − r2

0

R2
0

)
. (4.3)

To determine the stress component of the equilibrium equation with a further decrease in the angle θ, it is necessary
to integrate in the three regions: the region of reversible deformation r1 ≤ r ≤ R0, the region with the unchanged
irreversible strain tensor r2(t) ≤ r ≤ r1, and the regions of plastic flow r0 ≤ r ≤ r2(t). In the first two regions, as
above, the stress components and the function θ(r, t) are defined by relations (3.2), (3.4) and (4.2), in which the
function c(t) needs to be replaced by its current value x(t). For the region of plastic flow r0 ≤ r ≤ r2(t), using
relations (3.4) and the plasticity condition (3.5), we obtain

σrϕ = k + ηεp
rϕ, εp

rϕ =
1
η

(x(t)
r2

− k
)
. (4.4)

Using the kinematic relations (3.1), the condition of continuity of θ(r, t) for r = r2(t), and (4.4), for the
region of plastic flow we obtain

θ(r, t) =
x(t)
2μ

( 1
R2

0

− 1
r2
1

)
+

kt1
η

(
ln

(r2(t)
r1

)
+

r2
1

r2
2(t)

− 1
)
− 1

η

(
2kt ln

( r

r2(t)

)
+ x1(t)

( 1
r2

− 1
r2
2(t)

))
,
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x1(t) =
∫

x(t) dt.

Using the condition of continuity of the function ∂θ/∂r for r = r2, we determine the unknown functions x(t)
and x1(t) and obtain the following differential equation for r2(t):

x1(t) = k(t1 + t)r2
2 − kt1r

2
1 , x(t) = 2kr2ṙ2(t1 + t) + kr2

2,

θ(r0, t) =
2kr2ṙ2(t1 + t) + kr2

2

2μ

( 1
R2

0

− 1
r2
0

)
+

kt1
η

(
2 ln

(r2

r1

)
+

r2
1

r2
2

− 1
)

− 1
η

[
2kt ln

(r0

r2

)
+ k((t1 + t)r2

2 − t1r
2
1)

( 1
r2
0

− 1
r2
2

)]
. (4.5)

Equation (4.5) needs to be solved before the time t = t3, at which the surface r2(t3) reaches the surface
r = r1.

Beginning at the time t = t3, two regions remain in the material: the region of viscoplastic flow r0 ≤ r ≤
r2 = r1 and the region of reversible deformation r1 = r2 ≤ r ≤ R0. To trace the further motion of the boundary
of the region of viscoplastic flow r2(t), it is necessary, as above, to determine the stress–strain parameters in both
regions by integrating the equilibrium equations. In the region of reversible deformation, the function θ(r, t) is
obtained from relation (3.2) [with the current value x(t) of the function c(t)]. In the region of viscoplastic flow,
using kinematic relations (3.1), relations (4.4) and the condition of continuity of θ(r, t) for r = r2(t), we obtain

θ(r, t) =
x(t)
2μ

( 1
R2

0

− 1
r2

)
+

2kt

η
ln

(r2

r

)
+

x1(t)
η

( 1
r2
2

− 1
r2

)
.

To find the functions x(t) and x1(t), it is necessary to use the condition of continuity of the function ∂θ/∂r

for r = r2(t). As a result, we obtain

x1(t) = ktr2
2 , x(t) = ẋ1(t) = kr2

2 + 2ktr2ṙ2. (4.6)

The displacement vector components [the function θ(r, t)] should be continuous at any time. Hence, at the
time t = t3, the continuity condition should be satisfied for the functions x1(t) and x(t). A comparison of relations
(4.5) and (4.6) shows that the function x(t) can be continuous only if ṙ2(t) = 0. Thus, from the time t = t3 the
surface r2(t) reaches the original surface which bounds the region with accumulated irreversible strain, the region of
viscoplastic flow does not develop further in spite of an increase in the angle of rotation. In this case, plastic strain
components change in the region r0 ≤ r ≤ r2, remaining equal to zero on the boundary of the elastoviscoplastic
flow r = r2. As in the case described in Sec. 3, for the stop of the inner cylinder at any time t > t3, the strain and
stress components remain unchanged.

5. Deformation for Rotation of the Outer Cylindrical Surface. We consider the deformation of an
elastoviscoplastic material upon rotation of the outer rigid cylinder with the inner cylinder remaining motionless:

u
∣
∣
∣
r=r0

= 0. (5.1)

In this case, plastic flow also begins in the vicinity of the inner rigid wall when the stress state reaches the loading
surface (1.5). This plasticity condition is written as (4.1). The angle of rotation θ0 and the stress components at
the beginning of plastic flow are found from the condition (5.1) and the plasticity condition (4.1). The value of
θ0 is the same as in the case of rotation of the inner cylinder [see (2.4)], the stress components are calculated by
the relations

σrr = σzz =
k2r4

0

4μ

( 1
R4

0

− 1
r4

)
+ σ0, σϕϕ =

k2r4
0

4μ

( 1
R4

0

+
3
r4

)
+ σ0, σrϕ = k

r2
0

r2
.

With a further increase in the angle of rotation, the region of viscoplastic flows is defined by the inequalities
r0 ≤ r ≤ r1(t). In the region r1(t) ≤ r ≤ R0, reversible deformation occurs. The kinematics of the medium is
defined by relations (3.1). According to the equilibrium equations, in the region of reversible deformation,

θ(r, t) =
x(t)
2μ

( 1
r2
0

− 1
r2

)
.
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Fig. 2. Boundary r1(τ ) of the region of viscoplastic flow for rotation of the
outer cylinder (r0/R0 = 0.5).

In the region of viscoplastic flow, this function is determined from relations (4.4), kinematic relations (3.1), and the
continuity conditions for θ(r, t) at r = r1(t):

θ(r, t) =
2
η

(
kt ln

(r1

r

)
− x1(t)

2

( 1
r2

− 1
r2
1

))
+

x(t)
2μ

( 1
r2
0

− 1
r2

)
.

From the condition of continuity of ∂θ/∂r for r = r1(t), we find the functions x(t) and x1(t) and obtain the following
differential equation for the boundary of the region of viscoplastic flow:

θ(R0, t) =
2r1ṙ1kt + r2

1k

2μ

( 1
r2
0

− 1
r2

)
+

kt

η

(
2 ln

(r1

r

)
− r2

1

r2
+ 1

)
,

x1(t) = ktr2
1, x(t) = k(r2

1 + 2r1ṙ1t).

Figure 2 shows the development of the region of viscoplastic flows for the same linear law of loading and
the same constants as in Fig. 1. Unlike in the case of rotation of the inner cylinder, the boundary of the region of
viscoplastic flow does not have an asymptote and, with time, it reaches the outer boundary surface r = R0.

In the case of stop of the outer cylinder and its rotation in the opposite direction, the same effects are
observed as for the rotation of the inner cylinder. The value of θ2 for which the stress state for the rotation of the
outer cylinder in the opposite direction reaches the loading surface σrϕ|r=r0 = −k is defined by relation (4.3), in
which it is necessary to set

θ∗ =
2kt1
η

(
ln

( r1

R0

)
+

1
2

(
1 − r2

1

R2
0

))
.

The differential equation for the boundary r2(t) of the new region of viscoplastic flow becomes

θ =
2
η

(
kt ln

( r

r2

)
+

kr2
2(t + t1) − kt1r

2
1

2

( 1
r2

− 1
r2
2

))
+

kt1
η

(
2 ln

(r1

r2

)
− r2

1

r2
2

+ 1
)

+
2kr2ṙ2(t + t1) + kr2

2

2μ

( 1
r2
0

− 1
r2

)
.

From the moment the boundary r2(t) reaches the surface r1, the region of viscoplastic flows does not develop.
This work was supported by the Russian Foundation for Basic Research (Grant No. 05-01-00537-a) and the

National Science Foundation.
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